Sciences, Technologies, Santé

2025-2026

Master Physique appliquée et ingénierie physique Systèmes électroniques et microélectroniques

Présentation

Le Master Physique appliquée et ingénierie physique vise à former des chercheurs et ingénieurs de haut niveau, dotés de compétences étendues allant de la physique fondamentale aux applications et conceptions en ingénierie, dans des domaines spécifiques des sciences pour l'ingénieur.

Compétences à acquérir :

- Être apte à utiliser, avec un esprit critique, les outils numériques (simulation, acquisition de données...) des sciences de l'ingénieur;
- Être capable de concevoir et développer un programme dans un langage adapté à l'objectif; de mettre en œuvre et de réaliser en autonomie une démarche expérimentale;
- Être apte à valider un modèle par comparaison de ses prévisions aux résultats expérimentaux et apprécier les limites de validité d'un modèle;
- Être apte à élaborer une problématique et mobiliser les ressources pour documenter un sujet; à travailler de façon autonome, tout en s'intégrant dans une équipe.

Objectifs

Le parcours Systèmes Électroniques et Microélectroniques fonctionne en formation classique et en formation par alternance.

Ce parcours de Master forme au métier d'ingénieur R&D en électronique et microélectronique, avec un spectre de connaissances étendu, allant de la physique et de la technologie des composants électroniques jusqu'à la conception de systèmes intégrés complexes, embarquant de l'électronique analogique, numérique et des capteurs.

Ce Master donne également une place importante à la conception et à la programmation des systèmes embarqués qui sont au cœur de l'intelligence des produits innovants mis sur le marché. Les compétences principales acquises lors de la formation ont pour but de :

- Maîtriser l'électronique numérique et analogique, le traitement du signal et l'automatique :
- Maîtriser les mécanismes de fonctionnement des composants électroniques, incluant les capteurs. Maîtriser les modèles de ces composants;
- Connaître les principales technologies de l'électronique (CMOS, BiCMOS...);
- Maîtriser les diverses technologies de circuits programmables (microcontrôleurs, FPGA...) et savoir mettre en œuvre ces circuits dans des systèmes intelligents
- Savoir concevoir et tester un circuit intégré mixte analogique et numérique.
 Savoir utiliser les principaux logiciels professionnels de conception;
- Être en mesure de mener un projet de conception au sein d'une équipe.

Insertion professionnelle

Consultez le taux d'insertion professionnel d'après les enquêtes de l'ORESIPE.

Métiers visés

- Ingénieur en électronique ou micro-électronique
- Chef de projet
- Architecte système
- Ingénieur en test de circuit
- Ingénieur concepteur de circuits intégrés
- Ingénieur R&D

Composante	Faculté de physique et ingénierie
Langues d'enseignement	• Français
Niveau d'entrée	BAC +3
Durée	2 ans
ECTS	120
Volume global d'heures	1024
Formation à distance	Non, uniquement en présentiel
Régime d'études	 FI (Formation initiale) Alternance : contrat d'apprentissage Alternance : contrat de professionnalisation
Niveau RNCP	Niveau 7
RNCP	RNCP38983 : Master Physique appliquée et ingénierie physique
Secteurs d'activité	 Enseignement Recherche-développement scientifique Construction aéronautique et spatiale Fabrication de produits informatiques, électroniques et optiques
Code ROME	Responsable qualité en industrie Ingénieur / Ingénieure méthodes e process Ingénieur / Ingénieure de recherche scientifique Ingénieur / Ingénieure R&D en industrie Professeur / Professeure d'enseignement professionnel
Stage	Oui
Alternance	Oui
CFA partenaire	CFAU
Rythme d'alternance	Formation en alternance dès la 1e année de master En moyenne : 2 semaines à l'Université / 2 semaines en entreprise
Type de contrat d'alternance	Contrat d'apprentissageContrat de professionnalisation

Après quelques années d'expériences

- Directeur R&D
- Responsable de bureau d'études

Après un doctorat

- Enseignant-chercheur ou chercheur
- Responsable développement

Pour connaître en détail l'insertion professionnelle de nos diplômés, consultez cette

Les + de la formation

• La formation s'appuie sur différents laboratoires reconnus, et tout particulièrement sur le département d'électronique du solide, systèmes et photonique (D-ESSP) du laboratoire <u>ICube</u> (UMR7357, Laboratoire Commun du CNRS et de l'Unistra).

Pour connaître les droits de scolarité, consultez la page dédiée sur le site de l'Université de Strasbourg.

Contacts

Responsable(s) de parcours

Freddy Anstotz

Droits de scolarité

Autres contacts

Scolarité de la Faculté de physique et ingénierie de Strasbourg Formulaire de demande en ligne

Elle utilise également les ressources du réseau national du CNFM (Coordination Nationale de Formation en Microélectronique) : outre la centrale de CAO microélectronique de Strasbourg utilisant des outils logiciels professionnels, les étudiants bénéficient de ressources distantes, comme le testeur de circuits de Montpellier ou la salle blanche de Grenoble (CIME) dans laquelle chaque étudiant effectue un stage d'initiation aux techniques de fabrication des circuits intégrés.

Critères de recrutement

Niveau Licence (Bac+3) dans le domaine de l'EEA avec des compétences de bases en électroniques analogique et numérique.

Candidatures via la plateforme MonMaster (M1), Ecandidat (M2) ou via la plateforme «Étude en France » pour les étudiants étrangers des pays partenaires. Niveau B2 requit en langue française.

Candidater

Pour connaître les modalités de candidature, consultez la page dédiée sur le site de l'Université de Strasbourg.

Préreguis recommandés

- Mention(s) de licence(s) conseillée(s) pour accéder au M1:
 - Sciences pour l'ingénieur;
 - Électronique, énergie électrique, automatique.

Autres pré-requis (disciplines, matières, enseignements, recommandés):

- Bonnes bases de physique générale;
- Bases de physique du semi-conducteur ;
- Bases en traitement du signal;
- Bases en électronique analogique et numérique ;
- Bases en automatique.

06/12/2025 2/5

Programme des enseignements

Systèmes électroniques et microélectroniques

Master 1 - Physique appliquée et ingénierie physique - Systèmes électroniques et microélectroniques

Semestre 1 - Systèmes Electroniques et Microélectroniques (SEME)						
		СМ	TD	TP	CI	
UE 1 - Semestre 1 - Gestion de projet, communication et veille scientifique	3 ECTS	-	-	-	-	
Gestion de projet, communication et veille scientifique		10h	16h	-	-	
UE 2 - Semestre 1 - Langues	3 ECTS	-	-	-	-	
Anglais Lansad - Semestre impair		-	20h	-	-	
UE 3 - Semestre 1 - Traitement du signal et automatique	9 ECTS	-	-	-	-	
Traitement du signal		10h	8h	-	-	
TP Traitement du signal		-	-	20h	-	
Automatique		18h	16h	-	-	
TP Automatique		-	-	12h	-	
UE 4 - Semestre 1 - Electronique analogique 1	9 ECTS	-	-	-	-	
Électronique analogique 1		10h	8h	-	-	
TP Electronique analogique 1		-	-	12h	-	
CAO microélectronique		24h	-	24h	-	
CAN/CNA		12h	8h	-	-	
UE 5 - Semestre 1 - Electronique numérique 1	6 ECTS	-	-	-	-	
Architecture des micro-contrôleurs		16h	4h	-	-	
TP Architecture des micro-contrôleurs		-	-	16h	-	
VHDL		14h	-	-	-	
TP VHDL		-	-	24h	-	

Semestre 2 - Systèmes électroniques et microélectroniques					
	СМ	TD	TP	CI	
UE 1 - Semestre 2 - Introduction à la simulation multiphysique 3 ECTS	-	-	-	-	
Simulation multiphysique	10h	-	-	-	
TP de simulation multiphysique	-	-	24h	-	
UE 2 - Semestre 2 - Study and research work 6 ECTS	-	-	-	-	
Étudiants en FI : travail d'étude et de recherche	-	-	60h	-	
Étudiants en FA : évaluation du travail en entreprise	-	-	-	-	
UE 3 - Semestre 2 - Composants et Électronique analogique 2 6 ECTS	-	-	-	-	
Physique des composants	14h	16h	-	-	
Électronique analogique 2	18h	12h	-	-	

	СМ	TD	TP	CI
TP Électronique analogique 2	-	-	16h	-
UE 4 - Semestre 2 - Electronique numérique 2	-	-	-	-
Électronique numérique 2	22h	4h	-	-
TP Electronique numérique 2	-	-	28h	-
Bus de communication	14h	4h	-	-
Systèmes numériques embarqués	6h	-	24h	-
UE 5 - Semestre 2 - Technologie des composants, des CIs et des capteurs 6 ECTS	-	-	-	-
Capteurs	8h	4h	4h	-
Introduction à la technologie des composants intégrés	26h	-	-	-
Testabilité des circuits intégrés	24h	8h	8h	-
Travaux pratiques de salle blanche	-	-	20h	-

Master 2 - Physique appliquée et ingénierie physique - Systèmes électroniques et microélectroniques

		СМ	TD	TP	CI
UE 1 - Semestre 3 - Assurance qualité	3 ECTS	-	-	-	-
Assurance qualité		14h	10h	-	-
UE 2 - Semestre 3 - Langues	3 ECTS	-	-	-	-
Anglais Lansad - Semestre impair		-	20h	-	-
UE 3 - Semestre 3 - Technologie et composants	3 ECTS	-	-	-	-
Modèles compacts pour MOS avancés		14h	-	-	-
Technologies des composants intégrés et MEMS		12h	-	-	-
UE 4 - Semestre 3 - Analogique et capteurs intégrés	6 ECTS	-	-	-	-
Architectures analogiques pour le conditionnement de capteurs		30h	-	-	-
Micro-capteurs compatibles CMOS		20h	-	4h	-
Électronique RF		20h	-	4h	-
UE 5 - Semestre 3 - Numérique	6 ECTS	-	-	-	-
Architectures des opérateurs de calcul		24h	-	-	-
Architectures des processeurs		12h	-	-	-
Systèmes d'exploitation embarqués		-	-	18h	-
Architecture des systèmes asynchrones		10h	2h	4h	-
UE 6 - Semestre 3 - CAO de circuits et systèmes intégrés	3 ECTS	-	-	-	-
Mise en œuvre des outils CAO		-	-	20h	-
Projet de conception		4h	-	20h	-
UE 7 - Semestre 3 - Intégration des systèmes hétérogènes	3 ECTS	-	-	-	-
Gestion et récupération d'énergie		12h	-	-	-
CEM		8h	_	4h	_

	СМ	TD	TP	CI
Conception haut niveau des systèmes	4h	-	16h	_
UE 8 - Semestre 3 - Option selon le statut de l'étudiant 3 ECTS	-	-	-	-
Liste selon statut de l'étudiant - choisir 1 parmi 2				
Option A : formation en apprentissage (FA)	-	-	-	_
FA : évaluation travail en entreprise	-	4h	-	_
Règles juridiques et sociales des entreprises	-	20h	_	-
Option B : formation initiale (FI)	-	-	_	-
FI : Recherche et préparation de stage	-	12h	_	_
Règles juridiques et sociales des entreprises	-	20h	-	-

		СМ	TD	TP	CI
E 1 - Semestre 4 - Option selon le satut de l'étudiant	3 ECTS	-	-	-	-
Liste selon le statut de l'étudiant - choisir 1 parmi 2					
Option A : formation en apprentissage (FA)		СМ	TD	TP	C
Valorisation de stage ou apprentissage		-	24h	-	-
Séminaire - présence à toutes les soutenances de stage M2 SEME		-	16h	-	
Technologie sur site / présentation des entreprises		-	16h	-	
Option B : formation initiale (FI)		СМ	TD	TP	C
Valorisation de stage ou apprentissage		-	24h	-	
E 2 - Semestre 4 - Stage de fin d'études	27 ECTS	-	-	-	
tage		-	_	_	