Sciences, Technologies, Santé

2025-2026

Master Physique appliquée et ingénierie physique Modélisation numérique avancée

Présentation

Le Master Physique appliquée et ingénierie physique vise à former des chercheurs et ingénieurs de haut niveau, dotés de compétences étendues allant de la physique fondamentale aux applications et conceptions en ingénierie, dans des domaines spécifiques des sciences pour l'ingénieur.

Compétences à acquérir :

- Être apte à utiliser, avec un esprit critique, les outils numériques (simulation, acquisition de données...) des sciences de l'ingénieur;
- Être capable de concevoir et développer un programme dans un langage adapté à l'objectif; de mettre en œuvre et de réaliser en autonomie une démarche expérimentale;
- Être apte à valider un modèle par comparaison de ses prévisions aux résultats expérimentaux et apprécier les limites de validité d'un modèle;
- Être apte à élaborer une problématique et mobiliser les ressources pour documenter un sujet; à travailler de façon autonome, tout en s'intégrant dans une équipe.

Objectifs

Cette formation est axée sur une spécialisation en génie civil ou mécanique. Ce parcours est destiné à des étudiants ayant une formation à bac +3 dans les domaines du génie civil, du génie mécanique, de la plasturgie ou de la mécatronique.

La formation dispensée durant les semestres S1 et S3 s'appuie sur des problématiques issues directement d'applications et de problématiques complexes liées au métier. La résolution de ces problématiques se fait grâce à des outils de simulation tout en adaptant la solution numérique à l'application métier.

Option Génie Civil

Cette formation vise à former des spécialistes capables de maîtriser la démarche scientifique pour le calcul numérique en ingénierie dans les domaines du génie civil et de la mécanique. Il offre un aperçu détaillé des problèmes de modélisation d'ouvrages, de structures du génie civil et des logiciels numériques métiers. Ce programme vise également à démontrer comment l'ingénierie informatique est utilisée efficacement pour dimensionner les ouvrages en service. Ce programme de master est composé d'une formation de deux ans (quatre semestres).

La première année (M1) est consacrée aux apprentissages concernant la rhéologie des matériaux de construction, le dimensionnement des structures et des ouvrages dans leurs environnements et les méthodes de calcul appliquées à la mécanique des fluides et des solides Elle donne les bases des outils mathématiques et numériques soutenus par des projets métiers.

La deuxième année (M2) est composée d'un premier semestre, qui est axé sur la réalisation de projets de construction assistés par des codes industriels et des codes libres. La modélisation numérique pour la construction civile est une discipline en plein essor, qui associe la puissance des ordinateurs et le comportement des matériaux, des fluides et des structures sous sollicitations environnementales. Les simulations par ordinateur et les visualisations qui en découlent jouent un rôle majeur dans la conception des constructions civiles et le dimensionnement des ouvrages et structures, en interactions avec leur environnement.

L'ingénierie computationnelle est de plus en plus souvent le seul moyen de concevoir un ouvrage en ayant optimiser les solutions sous des contraintes liées à l'environnement, la durée de vie en service et la résistance ultime. Les objectifs sont de donner aux étudiants une large connaissance de la simulation numérique des phénomènes régis par la mécanique des matériaux, des structures, des fluides, le transfert de chaleur et de masse .

Composante	Faculté de physique et ingénierie
Établissement co-accrédité	INSA - Institut national des science appliqués de Strasbourg
Langues d'enseignement	• Français
Niveau d'entrée	BAC +3
Durée	2 ans
ECTS	120
Formation à distance	Non, uniquement en présentiel
Régime d'études	FI (Formation initiale)
Niveau RNCP	Niveau 7
RNCP	RNCP38983 : Master Physique appliquée et ingénierie physique
Disciplines	Informatique Génie informatique, automatique et traitement du signal Mécanique, génie mécanique, génie civil
Secteurs d'activité	• Enseignement
Code ROME	Responsable qualité en industrie Ingénieur / Ingénieure méthodes es process Ingénieur / Ingénieure de recherche scientifique Ingénieur / Ingénieure R&D en industrie Professeur / Professeure d'enseignement professionnel
Stage	Oui
Alternance	Non

Droits de scolarité

Pour connaître les droits de scolarité, <u>consultez la page dédiée</u> sur le site de l'Université de Strasbourg.

Contacts

Responsable(s) de parcours

• Cyrille Chazallon

Ce master vise également à former les étudiants à la recherche et au développement, par le biais de projets qui auront une importance industrielle et/ou académique. Au cours de ce programme de master, les étudiants acquerront des connaissances en ingénierie informatique qui leur permettront de postuler à des emplois dans les bureaux d'études et les entreprises de construction, ainsi que dans des laboratoires de recherche où des travaux numériques sont nécessaires.

Option mécanique

Cette formation vise à former des spécialistes de la conception des systèmes pilotée par simulation numérique dans le domaine de l'ingénierie mécanique. Le programme

Yannick HoarauLaurence Meylheuc

Autres contacts

Scolarité de la Faculté de physique et ingénierie de Strasbourg Formulaire de demande en ligne

des études offre un aperçu détaillé des problèmes scientifiques et techniques liés à la modélisation numérique dans le domaine de l'ingénierie mécanique en s'appuyant notamment sur des exemples issus directement d'applications complexes liées au métier. Les objectifs généraux et compétences visés comportent trois volets identifier comme suit :

- savoir choisir des modèles physiques complexes et des méthodes numériques avancées adaptés au problème visé et être capable de les mettre en œuvre :
- être capable de générer un modèle CAO pour le calcul et son maillage ;
- savoir analyser des résultats puis être capable de faire un choix sur la conception du système étudié. Les modèles physiques abordés pour traiter les applications visées sont issues de la mécanique des solides non linéaire, mécanique des fluides et de l'interaction fluide-structure. Les méthodes numériques utilisées pour résoudre les modèles physiques appartiennent aux méthodes d'approximations de solutions ou d'équations. Enfin, l'enseignement des outils numériques a pour objectif la maitrise de la chaîne numérique dans sa globalité y compris l'interopérabilité entre modeleurs géométriques et solveurs de calcul.

Ce master vise également à former les étudiants capables de résoudre des problèmes de recherche et au développement, dans le domaine de l'industrie ou dans des laboratoires de recherche académiques.

Insertion professionnelle

Consultez le taux d'insertion professionnel d'après les enquêtes de l'ORESIPE.

Métiers visés

- Ingénieur R&D
- Ingénieur calcul en BE interne ou externe
- Ingénieur structure et développement

Après quelques années d'expériences

• Directeur R&D

Après un doctorat

- Enseignant-chercheur ou chercheur
- Ingénieur de recherche

Pour connaître en détail l'insertion professionnelle de nos diplômés, consultezcette page.

Les + de la formation

- Le parcours s'appuie sur le laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (Cube), département mécanique.
- Deux options disponibles génie civil ou mécanique.
- Formation avec un haut niveau d'expertise dans le traitement des problèmes liés à la modélisation numérique en ingénierie mécanique et bénéficiant de moyens exceptionnels (hardwares et softwares).
- Formation s'appuyant sur la réalisation de projets annuels en partenariat avec les entreprises du Grand Est (réseau INSA).
- Formation en partenariat avec l'Institut des Sciences Appliquées Strasbourg formant des ingénieurs dans le domaine de la mécanique, mécatronique et plasturgie.
- Excellent taux d'insertion professionnelle, essentiellement en R&D.

Critères de recrutement

- Niveau d'entrée en M1: licence SPI (parcours mécanique et génie industriel ou mécatronique) ou génie civil.
- Niveau d'entrée en M2: formation d'ingénieurs de l'INSA, 4^e année génie civil, génie mécanique, plasturgie ou mécatronique ou M1 génie civil ou mécanique.

Candidater

Pour connaître les modalités de candidature, consultez <u>la page dédiée</u> sur le site de l'Université de Strasbourg.

Prérequis recommandés

Les pré-requis concernant les matières ou disciplines sont : la mécanique des structures, le génie civil, les modélisations physiques et numériques, les langages de programmation et un niveau B2 en anglais.

Stage

Type de stage

Type Lieu

Semestre

Rythme de présence en structure d'accueil Type de mission(s)

Au semestre 4 : 20 semaines financé par l'entreprise ou le laboratoire de recherche.

Assistant ingénieur en bureau d'étude, le stagiaire réalisera des tâches de modélisation, calcul, ou dimensionnement, sous la supervision d'un ingénieur expert.

Présentation et organisation de l'équipe pédagogique

L'équipe pédagogique comprend des enseignants titulaires de l'Insa, de l'université et des vacataires du monde de l'entreprise en proportion 60/40. Les volumes enseignés représentent en M1 : 20% de cours, 75% de travaux dirigés/ travaux pratiques ou 75% de projet.

Programme des enseignements

Modélisation numérique avancée

Master 1 - Physique appliquée et ingénierie physique - Modélisation numérique avancée avec UE à choix génie civil

Semestre 1 - Modélisation numérique avancée avec UE à choix génie civil					
		СМ	TD	TP	CI
UE 1 - Semestre 1 - Gestion financière et droit social	3 ECTS	-	-	-	-
Gestion financière et droit social		15h	9h	7,5h	-
Droit Social		15h	-	-	-
UE 2 - Semestre 1 - Initiation à l'algorithmique, Programmation C/C++ et Méthode et organisation	7 ECTS	_	-	-	-
Initiation à l'algorithmique		_	18h	-	-
Programmation C/C++		_	18h	-	-
Méthode et organisation		15h	-	-	24h
UE 3 - Semestre 1 - Langues (Anglais) béton armé, conception d'ouvrages en béton armé	7 ECTS	-	-	-	-
Langues (Anglais)		6h	15h	-	-
Béton armé 2		21h	21h	-	-
Conception d'ouvrages en béton armé		6h	-	-	24h
UE 4 - Semestre 1 - Construction métallique 1 et génie civil des réseaux enterrés	7 ECTS	-	-	-	-
Construction métallique 1		21h	24h	12h	-
Génie civil des réseaux enterrés		21h	12h	-	-
BIM Niveau 3		-	-	-	24h
UE 5 - Semestre 1 - Géotechnique 1 et lois de comportement	6 ECTS	-	-	-	-
Géotechnique 1		21h	15h	12h	-
Lois de comportement		12h	12h	3h	-

Semestre 2 - Modélisation numérique avancée avec UE à choix génie civil						
		СМ	TD	TP	CI	
UE 1 - Semestre 2 - Introduction à la simulation multiphysique	3 ECTS	-	-	-	-	
Simulation multiphysique		10h	-	-	-	
TP de simulation multiphysique		-	-	24h	-	
UE2 - Semestre 2 - TER	6 ECTS	-	-	-	-	
Étudiants en FI : travail d'étude et de recherche		-	-	60h	-	
UE 3 - Semestre 2 - Finite elements for mechanical and thermal systems	3 ECTS	-	-	-	-	
Finite elements		8h	-	8h	-	
Thermal systems		8h	-	8h	-	
UE 4 - Semestre 2 - Intelligence artificielle en mécanique	3 ECTS	-	-	-	-	
Intelligence artificielle en mécanique		_	-	-	24h	

	СМ	TD	TP	CI
UE 5 - Semestre 2 - Turbulence modelling 3 ECTS	-	-	-	-
Modélisation de la turbulence	14h	10h	-	-
UE 6 - Semestre 2 - Parallélisation des codes de calculs 3 ECTS	-	-	-	-
Parallélisation des codes de calculs	-	-	-	24h
UE 7 - Semestre 2 - Energies renouvelables 3 ECTS	-	-	-	-
Énergies renouvelables	-	_	8h	20h
UE 8 - Semestre 2 - Identification et expérimentation mécanique 3 ECTS	-	-	-	-
Identification et expérimentation mécanique	8h	_	16h	-
UE 9 - Semestre 2 - Dynamique et durabilité des structures 3 ECTS	-	-	-	-
Dynamique et durabilité des structures	-	-	-	24h

Master 2 - Physique appliquée et ingénierie physique - Modélisation numérique avancée avec UE à choix génie civil

		СМ	TD	TP	C
JE 1 - Semestre 3 - Projet de Recherche Technologique et langue	6 ECTS	-	-	-	-
Projet de Recherche Technologique		-	-	60h	-
angues (Anglais)		6h	15h	_	
JE 2 - Semestre 3 - Modélisation avancée des matériaux et des structures du génie civil	6 ECTS	-	-	-	
Modélisation avancée des matériaux et des structures du génie civil		15h	13,5h	13,5h	
Géotechnique		18h	15h	-	
JE 3 - Semestre 3 - Modélisation dynamique des structures	3 ECTS	-	-	-	
Modélisation dynamique des structures		15h	-	15h	
JE 4 - Semestre 3 - Modélisation Numérique Multi-physique	3 ECTS	-	-	-	
Modélisation Numérique Multi-physique		19,5h	-	15h	
JE 5 - Semestre 3 - Modélisation et Optimisation Numérique des Structures	3 ECTS	-	-	-	
Modélisation et Optimisation Numérique des Structures		9h	-	18h	
JE 6 - Semestre 3 - Au choix A ou B	9 ECTS	-	-	-	
Choix de l'option - choisir 1 parmi 2					
Option A		-	-	-	
Option A : Construction parasismique		18h	-	24h	
Option A : Construction mixte		12h	-	27h	
Option A : Béton précontraint		12h	12h	15h	
Option B		-	-	-	
Option B : Conception durable et infrastructures linéaires 2		-	-	-	3
Option B : Aménagement des bassins et rivières		18h	-	24h	
Option B : Aménagement et environnement		18h	_	_	2.

02/12/2025 5/8

Semestre 4 - Modélisation numérique avancée avec UE à choix génie civil							
		СМ	TD	TP	CI		
UE 1 - Semestre 4 - Préparation et valorisation de stage ou mission	3 ECTS	-	-	-	-		
Valorisation de stage ou apprentissage		-	24h	-	-		
FI : Recherche et préparation de stage		-	12h	-	-		
UE 2 - Semestre 4 - Internship (Stage)	7 ECTS	-	-	-	-		
Stage		-	-	-	-		

Master 1 - Physique appliquée et ingénierie physique - Modélisation numérique avancée avec UE à choix mécanique

		СМ	TD	TP	C
UE 1 - Semestre 1 - Management, Cycle sécurité	3 ECTS	-	-	-	-
Management, Cycle sécurité		-	24h	24h	-
UE 2 - Semestre 1 - Initiation à l'algorithmique, Programmation C/C++	3 ECTS	-	-	-	-
Initiation à l'algorithmique		-	18h	-	-
Programmation C/C++		-	18h	-	-
UE 3 - Semestre 1 - Langues	3 ECTS	-	-	-	
Langues (Anglais)		6h	15h	-	-
UE 4 - Semestre 1 - Construction 3	3 ECTS	-	-	-	-
Construction 3		10,5h	10,5h	15h	
UE 5 - Semestre 1 - Transfert Thermique 2	3 ECTS	-	-	-	
Transfert Thermique 2		18h	12h	12h	
UE 6 - Semestre 1 - Automatique 2	3 ECTS	-	-	-	
Automatique 2		13,5h	19,5h	-	
UE 7 - Semestre 1 - Thermodynamique appliquée	3 ECTS	-	-	-	
Thermodynamique appliquée		-	33h	-	
UE 8 - Semestre 1 - Mécanique des Solides Déformables 2	3 ECTS	-	-	-	
Mécanique des Solides Déformables 2		15h	9h	12h	
UE 9 - Semestre 1 - Conception de système automatique	3 ECTS	-	-	-	
Conception de système automatique		-	33h	-	
JE 10 - Semestre 1 - Mécanique numérique des fluides anisothermes	3 ECTS	-	-	-	
Mécanique numérique des fluides anisothermes		3h	-	12h	

Semestre 2 - Modélisation numérique avancée avec UE à choix mécanique						
	СМ	TD	TP	CI		
UE 1 - Semestre 2 - Introduction à la simulation multiphysique 3 EC		-	-	-		

		СМ	TD	TP	CI
Simulation multiphysique		10h	-	_	-
TP de simulation multiphysique		-	-	24h	-
UE2 - Semestre 2 - TER	6 ECTS	-	-	_	-
Étudiants en FI : travail d'étude et de recherche		-	-	60h	-
UE 3 - Semestre 2 - Finite elements for mechanical and thermal systems	3 ECTS	-	-	-	-
Finite elements		8h	-	8h	-
Thermal systems		8h	-	8h	-
UE 4 - Semestre 2 - Intelligence artificielle en mécanique	3 ECTS	-	-	-	-
Intelligence artificielle en mécanique		_	_	-	24h
UE 5 - Semestre 2 - Turbulence modelling	3 ECTS	-	-	-	-
Modélisation de la turbulence		14h	10h	-	-
UE 6 - Semestre 2 - Parallélisation des codes de calculs	3 ECTS	-	-	-	-
Parallélisation des codes de calculs		-	-	_	24h
UE 7 - Semestre 2 - Energies renouvelables	3 ECTS	-	-	-	-
Énergies renouvelables		-	-	8h	20h
UE 8 - Semestre 2 - Identification et expérimentation mécanique	3 ECTS	-	-	-	-
Identification et expérimentation mécanique		8h	-	16h	-
UE 9 - Semestre 2 - Dynamique et durabilité des structures	3 ECTS	-	-	-	-
Dynamique et durabilité des structures		-	-	-	24h

Master 2 - Physique appliquée et ingénierie physique - Modélisation numérique avancée avec UE à choix mécanique

		СМ	TD	TP	CI
UE 1 - Semestre 3 - Projet de Recherche Technologique	4 ECTS	-	-	-	-
Projet de Recherche Technologique		-	-	60h	-
UE 2 - Semestre 3 - Langues	2 ECTS	-	-	-	-
Langues (Anglais)		6h	15h	-	-
UE 3 - Semestre 3 - Mécanique Numérique des Solides Déformables	3 ECTS	-	-	-	-
Mécanique Numérique des Solides Déformables		3h	-	21h	-
UE 4 - Semestre 3 - Modélisation dynamique des structures	3 ECTS	-	-	-	-
Modélisation dynamique des structures		15h	-	15h	-
UE 5 - Semestre 3 - Modélisation Numérique Multi-physique	3 ECTS	-	-	-	-
Modélisation Numérique Multi-physique		19,5h	-	15h	-
UE 6 - Semestre 3 - Modélisation et Optimisation Numérique des Structures	3 ECTS	-	-	-	-
Modélisation et Optimisation Numérique des Structures		9h	-	18h	-
UE 7 - Semestre 3 - Simulation des procédés de mise en œuvre	3 ECTS	-	-	-	-

	СМ	TD	TP	CI
Simulation des Procédés de Mise en Œuvre	3h	9h	18h	-
UE 8 - Semestre 3 - A, B ou C 9 ECTS	-	-	-	-
Option A – Génie Mécanique : Conception des systèmes automatisés	-	27h	-	-
Option A – Génie Mécanique : Conception systèmes vibratoires	15h	3h	9h	-
Option A – Génie Mécanique : Mécanique des solides déformables	21h	24h	-	-
Option B – Plasturgie : Polymer processing : modelisation	-	21h	12h	-
Option B – Plasturgie : Polymer processing : simulation	-	15h	15h	-
Option B – Plasturgie : Injection molding process control	-	21h	12h	-
Option C – Mécatronique : Informatique industrielle	-	12h	18h	-
Option C – Mécatronique : Conception de transmission	-	30h	-	-
Option C – Mécatronique : Motorisation et commande d'axe pour la robotique	-	27h	-	-

Semestre 4 - Modélisation numérique avancée avec UE à choix mécanique					
		СМ	TD	TP	CI
UE 1 - Semestre 4 - Préparation et valorisation de stage ou mission	3 ECTS	-	-	-	-
Valorisation de stage ou apprentissage		-	24h	-	_
FI : Recherche et préparation de stage		-	12h	-	-
UE 2 - Semestre 4 - Internship (Stage)	27 ECTS	-	-	-	-
Stage		-	-	-	_