Sciences, Technologies, Santé

2025-2026

Master Sciences et génie des matériaux Ingénierie des polymères

Présentation

Cette mention de Master vise à former les étudiants au développement des matériaux fonctionnels du futur et à la compréhension de leurs propriétés. La formation utilise les connaissances des étudiants dans le domaine de la physique et de la physique-chimie.

Le niveau M1 comprend un tronc commun intégrant des cours, des travaux dirigés et des travaux pratiques effectués en partie dans des laboratoires de recherche. La formation expérimentale est donc une partie importante du cursus en M1. Ce niveau vise aussi à transmettre aux étudiants des bases théoriques solides et une vision contemporaine des matériaux (qu'ils soient macroscopiques ou nanométriques) dans le contexte du développement durable, mais également à former les étudiants à la conception et à la caractérisation des matériaux fonctionnels jusqu'à des échelles quantiques.

La deuxième année, M2, se compose de 5 parcours dont les contenus sont résumés en bas de la page. Les enseignements théoriques et expérimentaux continuent dans cette deuxième année avec une formation plus spécialisée. Finalement, la formation par la recherche se fait à travers des immersions dans les divers laboratoires de recherche via des stages de longue durée et des projets tutorés.

Objectifs

La spécialité *Ingénierie des Polymères (IP)* offre une formation interdisciplinaire en Sciences des Polymères. L'objectif de la formation est de faire acquérir aux étudiants un socle de connaissances générales sur les matériaux polymères, de la synthèse macromoléculaire aux propriétés de structure et de fonction des polymères et des objets en matière plastique.

Les notions d'ingénierie macromoléculaire, de génie de la polymérisation, de rhéologie des fluides complexes, de propriétés physiques et mécaniques sont ainsi abordées. Sont également dispensés des cours donnés par des intervenants industriels voués à présenter les procédés de synthèses et les applications/propriétés d'une famille de polymères mais également de sensibiliser les étudiants aux notions de coût.

Insertion professionnelle

Les <u>enquêtes de l'ORESIPE</u> menées chaque année auprès de nos jeunes diplômés montrent que près de 50 % poursuive leurs études en s'engageant dans une thèse.

Les 50 % restant trouvent en moins de 6 mois une insertion professionnelle directe dans un service de recherche et développement d'une entreprise (50 %), mais aussi en production/exploitation (7.4 %), commercial (5.9 %), méthodes/contrôle et maintenance (5.2 %) et dans des services de propriétés industrielles/brevets, Qualité...

Métiers visés

Ingénieur d'études

- · Chargé de recherche
- Ingénieur procédés et environnement
- Ingénieur technico-commercial
- Ingénieur projet (bureaux d'études, conception de projets)

Après quelques années d'expériences

- Chef de projet R&D
- Chef de projet industriel
- Responsable de laboratoire de recherche
- Responsable de services techniques

Composante	Faculté de physique et ingénierie
Langues d'enseignement	Anglais Français
Niveau d'entrée	BAC +3
Durée	1 an
ECTS	120
Volume global d'heures	207
Formation à distance	Non, uniquement en présentiel
Régime d'études	FI (Formation initiale)
Niveau RNCP	Niveau 7
RNCP	RNCP38708 : Master Sciences et génie des matériaux
Disciplines	 Chimie des matériaux Chimie théorique, physique, analytique Chimie organique, minérale, industrielle Biochimie, biologie cellulaire et moléculaire, physiologie et nutrition Biochimie et biologie moléculaire
Lieu	Strasbourg
Campus	Campus Cronenbourg
Secteurs d'activité	Autres activités spécialisées, scientifiques et techniques Recherche-développement scientifique Industrie pharmaceutique Fabrication de peintures, vernis, encres et mastics Fabrication d'équipements automobiles
Code ROME	Responsable qualité en industrie Ingénieur / Ingénieure d'affaires en industrie Ingénieur / Ingénieure de recherche scientifique Ingénieur / Ingénieure R&D en industrie Responsable d'unité de production industrielle
Stage	Oui

en collectivité

Après un doctorat

- Enseignant-chercheur ou chercheur
- Ingénieur R&D

Pour connaître en détail l'insertion professionnelle de nos diplômés, consultez <u>cette page</u>.

Critères de recrutement

Niveau d'entrée M1: titulaire d'un diplôme de licence de physique, sciences et génie des matériaux, sciences pour l'ingénieur, chimie,chimie-physique, mathématiques et informatique. Pour les autres étudiants, admission sur dossier.

Niveau d'entrée M2: niveau M1 requis et admission sur dossier.

Candidater

Pour connaître les modalités de candidature, consultez <u>la page dédiée</u> sur le site de l'Université de Strasbourg.

|--|

Droits de scolarité

Pour connaître les droits de scolarité, <u>consultez la page dédiée</u> sur le site de l'Université de Strasbourg.

Contacts

Responsable(s) de parcours

Christophe Serra

Autres contacts

Scolarité de la Faculté de physique et ingénierie de Strasbourg Formulaire de demande en ligne

Prérequis obligatoires

• Notions de base en chimie (synthèse et modification), physico-chimie (systèmes colloïdaux) et physique (mécanique) des polymères ainsi qu'en génie des procédés (réacteurs, mécanique des fluides et phénomènes de transport).

Prérequis recommandés

Pour accéder au M1: Connaissances générales en physique, chimie, physique-chimie, initiation aux matériaux.

Stage

Type de stage

Type Lieu

Semestre

Rythme de présence en structure d'accueil

Type de mission(s)

Semestre 2: initiation à la salle blanche et stage dans un laboratoire de recherche universitaire, un organisme de recherche ou dans l'industrie. Ce stage sera préférablement centré sur une activité associée à une technique d'élaboration ou de caractérisation. Stage de 6 semaines/ 6 semaines de formation pratique.

Semestre 4: stage R&D de 16 semaines (de février à juin) dans un laboratoire de recherche universitaire ou industriel.

Présentation et organisation de l'équipe pédagogique

Enseignants-chercheurs de l'<u>École de Chimie Polymères et Matériaux</u> (ECPM), interventions de personnes de l'industrie des polymères.

Programme des enseignements

Ingénierie des polymères

Master 1 - Sciences et génie des matériaux - Ingénierie des polymères

Master 1 - Sciences et génie des matériaux - Tronc commun

		СМ	TD	TP	C
JE 1 - Semestre 1 - Identification et caractérisation des matériaux	6 ECTS	-	-	-	-
Classes de matériaux		-	-	-	24
Structure des matériaux		-	-	-	24
UE 2 - Semestre 1 - Propriétés électroniques et dynamiques des matériaux	6 ECTS	-	-	-	
Propriétés électroniques et dynamiques des matériaux		24h	24h	-	
UE 3 - Semestre 1 - TP physique et initiation salle blanche	3 ECTS	-	-	-	
TP physique et salle blanche		-	-	37,5h	
UE 4 - Semestre 1 - Modélisation multi-physique	3 ECTS	-	-	-	
Modélisation multi-physique (anglais)		16h	16h	-	
UE 5 - Semestre 1 - UE obligatoires à choix (5 au choix)	12 ECTS	-	-	-	-
Liste UE 5 - choisir 4 parmi 6					
Physique statistique		16h	16h	-	-
Nanomatériaux		20h	-	-	
Matériaux semiconducteurs pour l'énergie		22h	-	-	
Rheology		12h	6h	-	
Polymer science		18h	8h	-	
Mécanique quantique		20h	12h	-	

Semestre 2 - Sciences et génie des matériaux (tronc commun)					
		СМ	TD	TP	CI
UE 1 - Semestre 2 - Propriétés optiques et magnétiques des matériaux	3 ECTS	-	-	-	-
Propriétés optiques et magnétiques des matériaux		24h	-	-	-
UE 2 - Semestre 2 - Matériaux Nanostructurés	3 ECTS	-	_	-	-
Matériaux nanostructurés		-	_	-	24h
UE 3 - Semestre 2 - TP matériaux	3 ECTS	-	_	-	-
Chimie des matériaux		-	_	40h	-
UE 4 - Semestre 2 – Physique de surfaces	3 ECTS	-	-	-	-
Physique des Surfaces		16h	-	-	-
UE 5 - Semestre 2 - Stage	12 ECTS	-	-	-	-

	СМ	TD	TP	CI
Stage	-	-	_	_
Préparation au stage et méthodologie bibliographique	-	6h	12h	-
UE 6 - Semestre 2 - UE obligatoires à choix (2 au choix) 6 ECTS	-	-	-	-
Liste UE 6 - choisir 2 parmi 3				
Techniques avancées de caractérisation	20h	-	-	-
Intelligence artificielle et matériaux	16h	-	_	_
Matériaux innovants et intelligents	20h	-	-	-
UE Facultative Facultatif				
UE 7 - Semestre 2 - UE facultative au delà de 30 ECTS 3 ECTS	-	-	-	-
Stage volontaire de recherche	-	-	-	-

Master 2 - Sciences et génie des matériaux - Ingénierie des polymères

		СМ	TD	TP	CI
UE 1 - Semestre 3 - Chemistry and synthesis processes	4 ECTS	-	-	-	-
Macromolecular design and engineering		11,66h	3,5h	-	-
Polymer reaction engineering		15,16h	-	-	-
UE 2 - Semestre 3 - Rheology and processing	4 ECTS	-	-	-	-
Rheology of complex fluids		15,16h	-	-	-
Polymer processing		14h	-	-	-
UE 3 - Semestre 3 - Physical chemistry	4 ECTS	-	-	-	-
Polymers in solutions and dispersed media: microencapsulation,coatings and biomedical applications		23,33h	-	-	-
Polymer formulation		10,5h	-	-	-
UE 4 - Semestre 3 - Physics	4 ECTS	-	-	-	-
Polymeric micro-nanofabrication for environment and health		12,83h	-	-	-
Propriétés physiques et mécaniques surfaces polymères		18h	-	-	-
UE 5 - Semestre 3 - Numerical simulation and monographs	4 ECTS	-	-	-	-
Numerical simulation and finite element method		15,16h	-	-	-
Monographs		10,5h	-	-	-
UE 6 - Semestre 3 - Entrepreneurship	2 ECTS	-	-	-	-
Entrepreneurship		-	9,33h	-	-
UE 7 - Semestre 3 - Documentary research / Microproject	3 ECTS	-	-	-	-
Research, Development and Innovation project		3,5h	-	11,66h	-
UE 8 - Semestre 3 - Foreign langage	3 ECTS	-	-	-	-

		СМ	TD	TP	CI
Liste UE8 - choisir 1 parmi 2					
English		-	10h	-	-
Anglais Lansad - Semestre impair		-	20h	-	-
UE 9 - Semestre 3 - Elective course	стѕ	-	-	-	-
Modules - choisir 1 parmi 5					
Recycling and circular economy		10,5h	-	-	-
Ecodesign of polymer materials		10,5h	-	-	-
Bioplastics		15,16h	-	-	-
Composites: materials, structures and processes		15,16h	-	-	-
Comparative materials engineering		10,5h	_	-	-

Semestre 4 - Ingénierie des polymères					
		СМ	TD	TP	CI
UE 1 - Semestre 4 - Master thesis 30 E	стѕ	-	-	-	-
Minimum 5 months research intership		-	-	-	-